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Army Intelligence Center and School.

This specific work was performed in accordance with the FY-87

statement of work (SOW #2).

' " ... u For

TI

%'

A-I

A-I



No. 119

Normalization Factors Used In Estimating Variance

INTRODUCTION

While Investigating Quickfix, two questions arose concerning the part of
the code where the estimate of variance is computed. (The estimate Is only
used if the estimated standard deviation derived from the variance Is bigger
than 3.) One question concerned the impact of truncation and shall not be
discussed further here. The other question concerned the division by n-3 that
occurs in the calculation where n is the number of lines of bearing being
used. If n-3 is wrong it affects ellipse size estimates. Simple one variable
problems use n-1, but since there are two coordinates to be determined one
might expect to see n-2. On further reflection, the usual analysis does not
directly apply to fixing so an investigation seemed necessary.

It turns out that use of the expected value of the estimator implies:
i) n-2 is the correct term to divide by for Minimization of Square

Angular Error methods and sine variations such as FFIX. It is
also the correct term for Weighted Perpendicular.

Ii) n-2 only applies to the Perpendicular Method in the case where
all sensors are approximately the same distance from the target.
In other cases this estimator is unstable but probably conservative.

As an example, suppose one sensor Is very close to the emitter
in comparison with the other sensors. Then

a) the close sensor doesn't influence the point estimate much
b) however, with a close sensor any size measured (not real)

angular error is possible. If sensors are close enough estimates
could even violate common sense since close sensors are nearly
ignored. The result is that division by n-2 is conservative and
error ellipses would be larger than necessary at least with regard
to this one issue.

Applicability of F statistics and tail behavior is more oGfricu±L to analyze
and not done here. At the very least a closer look is merited. Analysis of
the behavior of the variance estimator alone does not give a complete picture.

On the next page a few examples are given. The analysis for the different
methods follows in the rest of the report.
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I. EXAMPLES

All methods were computed but only Perpendicular is listed as other
methods all yielded n-2 (where n is the number of points) as expected.

Put the Emitter on the y-axis at (0,20) and the sensors ...

SENSOR LOCATIONS n-2 Perpendicular Method

on the x-axis at (-20,0), (0,0), and (20,0) 1 1.125

on the x-axis at (0,0), (20,0), and (40,0) 1 1.286

on the x-axis at (0,0), (40,0), and (80,0) 1 1.620

on the x-axis at (0,0), (20,0) and (400,0) 1 13.323

equidistant from
the emitter at (0,0), (12,4), and (16,8) 1 1.000

,1w

on the x-axis at (-20,0),(-16,0),(-12,0),
(-8,0),(-4,0),(o,o),(4,0),
(8,0),(12,0),(16,0),
and (20,0) 9 9.095

on the x-axis at (-40,0),(-32,0),(-24,O),
(-16,0), (-8,0), (0,0), (8,0),
(16,0),(24,0),(32,0),
and (40,0) 9 9.492

This means for example that in the (0,0),(20,0), and (400,0) case one should

divide the statistic for variance by 13.323 whereas in fact it is divided by

1. Hence the resulting error ellipse estimate would be too large from this

point of view by a factor of 13.323 for area or the square root of 13.323 too
larg in each direction.

a,

pa

/ '9............-- -
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II. EXPECTED VALUE OF THE UNNORMALIZED ANGULAR VARIANCE ESTIMATOR STATISTIC

Definitions

(XY) true location of the emitter

ak(X,Y) - true bearing from the kth sensor to the emitter (X,y)

8e - observed bearing from the kth sensor (multiple readings
are treated as coming from different sensors)

(x,y) - (x( 1,..., n),y(e 1 ,...,e n))-estimated location of the
emitter

ek (xy) - bearing from the kth sensor to the estimate (x,y)

a - standard deviation of the angular measurement of the
LOBs in radians (multiply by v/180 if in degrees)

E - error in kth LOB - ek-ek(X,Y) (assume independent Ek)
kk k k

(x kYk) sensor location of kth LOB

r2 (x-Xk )2 2 R2(X-xk) 2(Y-y)2

Calculations

The following approximation will be the basis for subsequent calculations

0 (xy)-4 C 6 Mk Y),+) Z n ( kS((X Y) nx +e k(x'Y) .Y )Ej]-1Sk(X,Y)+e I
k k ky Jj .. k

where all of the partial derivatives indicated must be evaluated at the true
point or zero error. (Note that this approximation is based upon a Taylor
Series expansion.) To evaluate this expression one also needs to recall that

0 k (x,y) - Arctan((x-xk)/(y-yk))

and hence .

;ek(xly) - (Y-Y )/r2

ek(xy) . -(x-xk )/r2

y ~ kk

Substituting, evaluating at the true and simplifying one gets

k(x~y- . 1 -Yyk -E(X((~ )E ]/R k[Ek]

And hence

E( In(0  2 1 n[,xf (Xx ))20
2/R 4

k-i1 k-,)O) k~L~l\Y~-ek(x)y)-ek )  k= )nFR x nk
k ~ 1 (Yy)a Xxk

ac 2 an[ -(- k

41' - ~*
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III. LEAST SQUARES TYPE FIX METHODS

Part of the analyis of these methods is independent of which method is
being analyzed.

Extra definitions that apply to Least Square based methods

Lk = Lk(x,yBk)-the 'squared error term' corresponding to
the kth LOB and a location estimate of (x,y)
for the least square method.

L(x,ye 1 ,...,e n) - nIL -the sum of squares that the method minimizes

Let bk=L k/ax Ck- Lk /) y dk=PLk/ /x2 ek- aLk// xy fk. Lk/yY

where each term above is evaluated at the true angles and point.

Let notation represent derivatives with respect to e k for b k and ck -
Let Q-1/(ZdiIfi-Ee Iel).

These include the Perpendicular method, minimization of angular error,
and the sine variation of minimization of angular error used by FFIX

Assume that x,y are defined implicitly as the minimum of

L-Z Lk(x,y,ek)

in the sense that aL/Ox -L/4y=O

One ca zo (a: MARC has In it's report "Two Dimensional Uncorrelated
Bias in Fix Algorithms") that the partial derivatives evaluated at the true
are

I f x / I£ k - e k ] i,
cy/t EI (Ed k)(if k)-(Ze k )2 -re k  Ed k i

The value of the first partials of x and y for different Least Square based
methods and derivations of the correct value term to divide by are listed In
the the first portion of the Appendix.

W 11V
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Appendix

Minimization of Square Angular Error Method

Lk - [Arctan((x-xk)/(y-Yk))-ek 
2

b - -2(Y-y )/R
2

k k k

ck 2(X-x )/R
2

k. k k

d - 2(Y-y )2/R4
k k k

ek- -2(X-x )(Y-Y )/R
kk k k

f k 2(X-xk)2/R4
k k k

Perpendicular Method

Lk= [(x-xk )2cos 2 ek+ (y-yk)2sin 2ek-2(y-yk)(x-xk)sinekcosek]

bk= -2(Y-yk

Ck- 2(X-x )

d - 2(Y-Y )
2 /R2

k, k k

ek- -2(X-x )(Y-y )/R2
kk k k

fk 2(X-xk )
2 /R2

Compario-qn with similar terms for the Minimization of Square Angular

Error method (above) shows that the only difference is a factor of R 2

Examination of the formula for partial derivatives of x and y with respect

to measurement error evaluated at the true shows that if all R are the same
k

then the difference between the perpendicular method and minimization of

cancels out and these evaluated partial derivatives would be the same. As a4

"result the n-2 normalization factor that is derived for Minimization of

Angular Error also applies to the Perpendicular Method when the distance of

all sensors from the emitter are equal.

Sine of Error Minimization Method

The partial derivatives for this method are identical to the ones Just
shown for the Minimization of Angular Error method. Thus, first-order terms

are identical for both methods. However, the ak is as follows.

L- [(x-x k )COS2e+k(y-yk)2sinek-2(yYk)(x-xk)sinekcosek]/[(X-X) (-Yk)) ]

V%



Demonstration that n-2 applies to Minimization of Square Angular Error

For this method, (b) 2 .2df (c ).fi and 1c1-2e

ThusQ2In Xxk2
12 JE ((Y-yk) ax (x) )2-

1 kE! i -

(f(Y-y)Ef . (X-,x k)Ie 1 2 j E (b 2
2 (KY-y )rf +(X-x )Ee 1[(Y-yk)EeI4-(X-x )Ed I EnbC~

+ {(Y-y )re +(X-x )Ed ) 2 Jn ( c)
2  k i-

- (Y-yk)Ef i+CX-xk )re )j rE 2d
J-2{(Y-yk)If +(X-x )Zel i {(Y-Y )re +(X-x )EdI1jn2e,

+ I(Y-Y )Ee +(X-xk )Ed )2 rn2fk~ ~ k J.i j

[I(-Y)r 1+2(Y-y )(X-x)re if )+(X-x )Ee ) 2]j'd
k i k i i k i I j

-2[(Y-y )2 zf le +(X-x )(Y-y )(rE )2Z Ef +-x~< Ed1Ee3 I E2ej
k I i k k e)~ Ef +( 2)

+ [{(Y-ylk )Ze J 2+2(Y-y k)(X-x k)Ed i e 1+[(X-xk )Ed 1 12] JE12f

- CY-Yk )2 12Ef Ef Ed -2Ef Le le1
k i Ii ii I

+(X-x )(Y-y k)[Zd Ede LVE i-4Ie L e L e il

+(X-x k) 2-2te k e kEd k+2Ed kEd kV Efk

However since Q factors out of the last expression one has

E~n(Y- ) -C(X-x )') )2_ 2[(Y-yk)2 rVI+2(X-x )(Y-y )Ee +(X-x )2 1d ]/Q

a. Hence

EnE Enf(C~ x-Xx ))202/R4] Z d I f -21e Ee +: f I d.]0 2/Qk-i J-lk a -- k) ) k k k i i k I k ki i

-2Qo
2 /Q

The other termi

22

- [Lk Ek Eek Lek +ek ek k k

E. n( 2o2 ^ 2 0

E( 1 nekCx y>)2) 2 2 a2)+nG2 _(n-2)o
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Weighted Perpendicular (Not Definable in Terms of Least Squares)

The Weighted Perpendicular Method Is not definable as a least square's
: method and so a separate formula needs to be derived for first-order bias. It
. is necessary to establish notation for this case.

Definitions

a C02 A co A)2R 21 A cose 1 (X,Y)-(Y-yl)2/R2  a - a I/r A - EA /R '

sina B sin 26 (X,Y)-(X-x )2/R2  b - Eb /r B - 1B /R

C sinOcos81  C -(X-x )(Y-yi)/R' c - Ecl/r2 C - EC /R2

d. ax - c y D -A x Cy d - Ed/r 2  D - ED /R2

eI = -CX i + bYy E = Cix + B Y e - lei/r2  E - EE./R 2

a -c 

a -

x.1 bI b c

(x,y) - (s /r) (s /r'
ab-c' .l

First Partials:

r 2/( 2(x-x )( x/;e ) +k2(y-y ) y/ )k k + k
a/, -2c /r 2 

- 4~ r. .2 )
k k k ii r/k)

Cb/ e - (a b/r 2 - ZVb r 4 - r2/e)k k k k i I k-c ; (ak-bk)/r2 - E(ci/r'i . r2~ k

6d/ Sk - [-2ckxk + (bk-ak)Yk]/r2 - E(d /r " 4.lc )

e /a e [(b -a )x + - (di/rZ-. Er2/s/r)
k k k k k k II 1k

Differentiating the defining equatiun:

e/ -bd + el
k - 2(a( b/3e,) )b(4a/Ok )-2c(. c/4 k)) -
k (ab - c 2  k d + a e

b Ib( d/ ek) + d(,b/ bk) + c(ce/OSk) + e c/k)e ki
(ab - c )  c(ldlek ) + d( c/O k) + a( e/bek) + e( a/4ek)

", , = '. "r' ". "- .,"¢ ,- ,,", "w'.-w "" "- w"". ". "- =
-
. '", . ' w - - ,',"4"-"-" e - - " W'.". " ' " - ; -".' .---'.--- %



Simplifying the defining equation:

Let f k- 2[b 2 d+bce-ace-c2 d]c k + [2cbd+c 2e+abe](a k-b )

" [b2a-c2b](-2ckxk + (bk-ak)yk) + [c(ab-c2 )]((bk-ak)xk + 2ckY k

hk [-bd-bce]ak+[-ace-db+[2cbd+c2 e+abe]ck+[b a-cbdk+[c(ab-c2)]e
kkk kk k

Let g k 2[bcd c2 e-acd-a2 e]ck + [2ace+cd+abd](a k-b )

+ [c(ab-c2 )](-2ckXk + (bk-ak)Yk) + [a(ab-c 2 )]((bk-ak )Xk 2ckYk)

ik- [-bcd-c 2 e]ak+[-acd-a 2e]bk+[2ace+c'd+abd]C k[(ab-c2)cldk [a(ab-c)]ek

X/e- -f /r /r r 2/./eh ab-c)

y/g)/ m -/ 1/r I.r/e I 1/(ab-c2)2
k k k k1j S

Let Fkd Gk,Hk, and Ik be f kgkOhk, and ik evaluted at the true as in the

Taylor Series expansion.

Plugging in for &r2 /a and evaluating at the true yields
i kc

x /,ek  [F k/R2 -k 12{((X-x ) x/8k +(Y-Yj)oY/ k )H /R}/(AB-C2 )2

a -/ -J2((X-x a ) /)Ij/R }/(AB-C2).
-k k k k k .J

*" where the partials shown are also evaluated at the true.

Let
q - [(AB-C2 )2+2jjn[(XX )H /R'I1J[(AB-C2)2 +2Eln((Y-y )I/R

=1 .j j J j1 j S

=,-[2jjn{(Yyj)Hj/R)}][2j {[(X-xj)Ij/R;}] i
1- j 1 .i 1- .j Si S

For partials evaluated at the true

X/46 [F /R2 [(AB-C2)2+ jn 2 {((Y-y )I /R )-G /R {jrn2(Y-.y)Hj/R;]/qk k kc J.1 J J k kc 1cS-i i

Y/ k -[-F /R2 {jln2{((X-xj)Ij/R [1+G /R2 {(AB-C2)2+ n2(X-x )H /R ):1/qk kc kj-1 j i k kii i
The answer must be invariant under translations (independent of where the
origin is placed.) Fortunately calculations are a good deal easier if we
choose (X,Y)-(O,O). (Note we don't do that In the computerized examples
however.) With this assumption

D k.E kwO for all k. Hence D-E-O. Further Implying H kmI k-o for all k.

Hence q=(AB-C2) 4 and

x/e -k(AB-C2 )2 F k/(Rkq){B(-RCkX k(Bk-Ak)Yk)+C((Bk-A k)X 2CkYk +2C [Ry A) -C 2/[ k(A

k%



- (B(-(B +A )*C+((B +A )x 1/CR (AB-C2)]* k' k'''k k k kc
A - {-By +Cx )/CR 2 (AB-C2 )]

k k k

y/~e (AB-C) G /(R)-(C(-2C x +(3Ay)A(B -ArR(B-2kk kk k k k k-A k 2 C kyk)LR(Ak )
k k k 'k kJkAkkk

{B~2-2- (AxC/[k+AB-2)/]ABc

k k k- k k

/R _ {BA-2C2 +AB)/(AB-C2 )-2

-(n r-)n/j )2/R4
Aa{(Y-y ) A/Ve k1k=1 (-kcx J k 1 k

- j~ knyw/ j 2_xy()/~ (y6 )+x2(()y/je) 2 1/R 4

. jEn (A(cx/c).) 2 -2C(;x/c)6 )(C)/) +()/b )21

- jEn[A{-Byj+Cxj2C(Bjc IfC A +{C A /R2(BC

-{AB{AB-C2 }-2C2(BA-C 2 )+AB{-C2+AB}J/(AB-C2)2

-2

Thus

E(J1~ k(x,y)-e k) ,~ o-(,)+nG2 - (ni-2)0 2

(Note that partials with respect to ekare equal to partials with respect
to C k*)
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